Traumatic Brain Injury Blog

head

Tagged with “Mild Traumatic Brain Injury”

January 17, 2017

“Rest Until Symptom Recovery” May Not be the Best Medicine for Children and Adolescents Recovering from Acute Concussion

In a study published in  the Journal of the American Medical Association (JAMA) on December 20, 2016, Canadian researchers found that children and adolescents who returned to exercise within seven days of experiencing a concussion had nearly half the rate of persistent post-concussive symptoms a month later. This finding challenges the current cornerstone of pediatric concussion management, which is physical and cognitive rest until acute symptoms have resolved. Read More

December 28, 2016

Auditory Response, a Promising New Objective Test for Concussion

In recent years a great deal of research has been done to identify an objective “biomarker” of concussion. As reported in this blog, some promise has been found in blood biomarkers (measuring plasma tau protein levels) and neuroimaging, such as the DTI MRI sequence. Unfortunately, these approaches are invasive and/or expensive and are not always a reliable indicator of concussion and concussion recovery. As reported in our November 27, 2016 blog post, until now, one of the most promising concussion screening tools was a series of vision tests endorsed by the Department of Defense.

Scientists at Northwestern University have now found a related, and what appears to be an even more precise and accurate tool, a measure of the brain’s electrophysiological response to sound. Read More

November 27, 2016

Eye Tests as Screening Tool for Acute Mild Traumatic Brain Injury

Department of Defense researchers endorse use of eye tests as an effective screening tool for acute mild traumatic brain injury (concussion)

In prior posts we have discussed the growing recognition that one of the signature symptoms of concussion is a subtle change in visual processing. Army researchers funded by the US Department of Defense have just published findings further supporting this understanding in the November 15, 2016 issue of the Journal of the Neurological Sciences.

In the published findings, the authors note that “mild” traumatic brain injury (mTBI) is sometimes difficult to diagnose because of the overlap of symptoms with other disorders such as PTSD. This has led to a quest for biomarkers or diagnostic tests (e.g. protein, imaging, cognitive, neurosensory.) This quest is especially significant for warfighters at risk for more severe “second-impact” concussions and whose lives and safety may be endangered by visual or cognitive compromises. Read More

November 10, 2016

Genetics a Likely Factor in Variability of Outcome Following Concussion

Most experts in traumatic brain injury (TBI) agree that there is a high degree of variability in outcomes after TBI, including concussions (usually characterized as “mild” TBIs – mTBI.) In other words, this injury is heterogenous; generalizations about recovery rates and outcomes are not particularly  productive.

In prior posts we have discussed research finding physical differences between patients who recover quickly and patients with persistent symptoms (such as differences in DTI imaging and differences in the presence of certain proteins.)  This research contradicts the position some clinicians previously held that persistent symptoms following mTBI were likely the result of a “somatoform” or mental health disorder. We have also discussed research identifying some of the individual factors that explain the variability of outcomes, such as prior TBIs and preexisting migraine. We have also discussed how the particular forces involved in a TBI may affect different structures of the brain producing different outcomes (such as changes in vision, changes in balance or changes in the function of the pituitary gland resulting in hormonal imbalances.)

It has always been suspected  that one of the factors explaining such variability in outcome may be genetic differences. Read More

May 18, 2016

New Guidance on Assessing Neuroendocrine Dysfunction following TBI

In our May, 2014 post,  we reported on research showing that traumatic brain injury, including mild traumatic brain injury (mTBI),  can damage and cause dysfunction in the pituitary gland resulting in deficiencies in key hormones released by the pituitary gland, such as Growth Hormone (GH). As we explained in that post, the anatomy of the pituitary gland makes it particularly susceptible to the sheering injuries seen in TBI.  These hormone deficiencies can produce many of the persistent symptoms seen following a TBI, such as fatigue, poor memory, depression, anxiety, emotional lability, exercise intolerance, lack of concentration and attention difficulties. (Although not always the case, these deficiencies can also produce physical symptoms, such as increased fat mass – especially in the abdominal area – and increased cholesterol.)  We also noted findings showing that pituitary dysfunction can worsen over the five year period following an injury – in other words, that this is an issue that deserves to be monitored on an ongoing basis. Read More

December 17, 2015

Penn Medicine Declares “Mild Traumatic Brain Injury an Oxymoron”

The University of Pennsylvania Perelman School of Medicine issued a press release on November 23, 2015 declaring “mild brain injury an oxymoron” based on newly released research.  The research, performed in collaboration with the University of Glasgow, demonstrates how brain wiring can be damaged after a concussion–damage that in some cases never repairs.

The research, published online in November in Acta Neuropathologica, builds on prior studies showing that nerve fiber damage in the brain can be demonstrated by the presence of a brain protein called SNTF. Read More

August 13, 2015

Study Links Tau Protein with Persistent Post-Concussive Symptoms

Research from the National Institute of Health, published in the August 3, 2015 issue of JAMA Neurology, shows that a protein that was until recently linked only to acute symptoms following traumatic brain injury, may also be responsible for chronic neurological symptoms, such as headache and dizziness,  found in patients diagnosed with persistent post-concussion syndrome.

Tau is a protein known to play a significant role in the development of Alzheimer’s disease and Parkinson’s disease. Using ultra-sensitive technology, the researchers measured levels of tau in the blood months and years after injury. These levels correlated with the severity of post-concussive symptoms. If these findings are further confirmed, this could be the first biomarker that is sensitive and specific to ongoing TBI symptoms. Read More

June 29, 2015

New Radiology Study Finds Distinctive Post-Concussion Brain Injury Patterns in Patients with Depression and Anxiety

The Radiology Society of North America has published a new study that identifies particular white matter brain injury patterns in patients with persistent depression and anxiety following mild traumatic brain injury (concussion or mTBI.) Read More

June 17, 2015

A Surprisingly High Percentage of Uncomplicated MTBIs have Persistent Deficits and Require Ongoing Therapy

The April, 2015 issue of The American Surgeon reports on a retrospective study of 395 patients admitted to the ER following concussions (MTBI, or mild traumatic brain injury). The patients had “normal” Glascow Coma scores of 15 and normal CT scans and therefore met discharge criteria. The study found that a surprisingly high percentage of these patients (27%) had persistent deficits after neurocognitive testing and benefitted from referral for ongoing therapy.  The study is authored by Hartwell et. al. and entitled “You Cannot Go Home: Routine Concussion Evaluation is Not Enough.” Read More

January 5, 2015

The verdict is clear: diffusion tensor imaging demonstrates damage to the brain associated with mild traumatic brain injury

The weight of scientific evidence demonstrates that “diffusion tensor imaging” is an effective tool for demonstrating damage to the white matter of the brain associated with mild traumatic brain injury.

The damage typically associated with mild traumatic brain injury (mTBI) is in the axons, the microscopic fiber tracts in the white matter of the brain too small to be seen by conventional tools such as MRI and CT. In fact an individual with a perfectly normal MRI and CT could even be in a coma due to a brain injury. Treatment providers have been left to infer injury from clinical symptoms. However, even the most commonly used clinical tools, such as neuropsychological assessment, are generally seen as insensitive to the subtle, but sometimes life altering, effects of mTBIs. Read More